tinyML Summit 2021 tiny Talks: Hardware Aware Training for Efficient Keyword Spotting on General…

tinyML Summit 2021 https://www.tinyml.org/event/summit-2021
tinyTalks Algorithms and Tools
“Hardware Aware Training for Efficient Keyword Spotting on General Purpose and Specialized Hardware”
Chris ELIASMITH, Co-CEO, Applied Brain Research

Keyword spotting (KWS) provides a critical user interface for many mobile and edge applications, including phones, wearables, and cars. As KWS systems are typically ‘always on’, maximizing both accuracy and power efficiency are central to their utility. In this work we use hardware aware training (HAT) to build new KWS neural networks based on the Legendre Memory Unit (LMU) that achieve
state-of-the-art (SotA) accuracy and low parameter counts. This allows the neural network to run efficiently on standard hardware (212 µW). We also characterize the power requirements of custom designed accelerator hardware that achieves SotA power efficiency of 8.79 µW, beating general purpose low power hardware (a microcontroller) by 24x and special purpose ASICs by 16x.


Leave a Reply

Your email address will not be published.